585 research outputs found

    Properties of Al-doped ZnS films grown by chemical bath deposition

    Get PDF
    Zinc sulphide (ZnS) buffer layers are a cadmium free, wider energy band gap, alternative to the cadmium sulphide(CdS) buffer layers commonly used in copper indium gallium diselenide (CuInGaSe2)-based solar cells. However extrinsic doping of the ZnS is important to lower the resistivity of the layers and to improve flexibility of device design. In this work, Al-doped ZnS nanocrystalline films have been produced on glass substrates using a chemical bath deposition (CBD) method. The Al- concentration was varied from 0 at. % to 10 at. %, keeping other deposition parameters constant. The elemental composition of a typical sample with 6 at. % ‘Al’ in ZnS was Zn=44.9 at. %, S=49.8 at. % and Al=5.3 at.%. The X-ray diffraction data taken on these samples showed a broad peak corresponding to the (111) plane of ZnS while the crystallite size varied in the range, 8 – 15 nm, depending on the concentration of Al in the layers. The films with a Al-doping content of 6 at. % had an optical transmittance of 75 % in the visible range and the energy band gap evaluated from the data was 3.66 eV. The films n-type electrical conductivities and the electrical resistivity varied in the range, 107-103 Ωcm, it decreasing with an increase of the Al-concentration in the solution

    Efect of temperature increasing on Nanofluid structure.

    Get PDF
    Nanofluids which are known as new generation of thermal fluids have particular features which were affected on their behavior. One of these features is response of nanofluids to temperature changes. Ultrasonic mixer is used to prepare the nanofluid. Ultrasonic mixer sends out waves and the wave itself makes the heat. Numbers of encounters between nanoparticles also are increased by increasing the temperature. These collapses may lead to agglomeration or recrystallization of nanoparticles. In this work, the attempted made to study structural changes of nanofluid as increasing the temperature which is very important for engineering designs. Obtained results for nanofluids were illustrated that the temperature in nanofluid was increased in lower ranges than pure water. Water-copper oxide and also water-alumina nanofluids were used

    β\beta-BaB2_2O4_4 deep UV monolithic walk-off compensating tandem

    Full text link
    The generation of watt-level cw narrow-linewidth sources at specific deep UV wavelengths corresponding to atomic cooling transitions usually employs external cavity-enhanced second-harmonic generation (SHG) of moderate-power visible lasers in birefringent materials. In this work, we investigate a novel approach to cw deep-UV generation by employing the low-loss BBO in a monolithic walkoff-compensating structure [Zondy {\it{et al}}, J. Opt. Soc. Am. B {\bf{20}} (2003) 1675] to simultaneously enhance the effective nonlinear coefficient while minimizing the UV beam ellipticity under tight focusing. As a preliminary step to cavity-enhanced operation, and in order to apprehend the design difficulties stemming from the extremely low acceptance angle of BBO, we investigate and analyze the single-pass performance of a Lc=8L_c=8 mm monolithic walk-off compensating structure made of 2 optically-contacted BBO plates cut for type-I critically phase-matched SHG of a cw λ=570.4\lambda=570.4nm dye laser. As compared with a bulk crystal of identical length, a sharp UV efficiency enhancement factor of 1.65 has been evidenced with the tandem structure, but at 1\sim-1nm from the targeted fundamental wavelength, highlighting the sensitivity of this technique when applied to a highly birefringent material such as BBO. Solutions to angle cut residual errors are identified so as to match accurately more complex periodic-tandem structure performance to any target UV wavelength, opening the prospect for high-power, good beam quality deep UV cw laser sources for atom cooling and trapping.Comment: 21 pages, 8 figures, to appear in Opt. Commu

    CXCL-10: a new candidate for melanoma therapy?

    Get PDF
    Background: Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking. Conclusions: Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target. © 2020, International Society for Cellular Oncology

    A Graph based architectural (re)configuration language

    Get PDF
    For several different reasons, such as changes in the business or technological environment, the configuration of a system may need to evolve during the execution. Support for such evolution can be conceived in terms of a language for specifying the dynamic reconfiguration of systems. In this paper, continuing our work on the development of a formal platform for architectural design, we present a high-level language to describe architectures and for operating changes over a configuration (i.e., an architecture instance), such as adding, removing or substituting components or interconnections. The language follows an imperative style and builds on a semantic domain established in previous work. Therein, we model architectures through categorical diagrams and dynamic reconfiguration through algebraic graph rewriting

    An intelligent content prefix classification approach for quality of service optimization in information-centric networking

    Get PDF
    This research proposes an intelligent classification framework for quality of service (QoS) performance improvement in information-centric networking (ICN). The proposal works towards keyword classification techniques to obtain the most valuable information via suitable content prefixes in ICN. In this study, we have achieved the intelligent function using Artificial Intelligence (AI) implementation. Particularly, to find the most suitable and promising intelligent approach for maintaining QoS matrices, we have evaluated various AI algorithms, including evolutionary algorithms (EA), swarm intelligence (SI), and machine learning (ML) by using the cost function to assess their classification performances. With the goal of enabling a complete ICN prefix classification solution, we also propose a hybrid implementation to optimize classification performances by integration of relevant AI algorithms. This hybrid mechanism searches for a final minimum structure to prevent the local optima from happening. By simulation, the evaluation results show that the proposal outperforms EA and ML in terms of network resource utilization and response delay for QoS performance optimization

    Solid-state laser system for laser cooling of Sodium

    Full text link
    We demonstrate a frequency-stabilized, all-solid laser source at 589 nm with up to 800 mW output power. The laser relies on sum-frequency generation from two laser sources at 1064 nm and 1319 nm through a PPKTP crystal in a doubly-resonant cavity. We obtain conversion efficiency as high as 2 W/W^2 after optimization of the cavity parameters. The output wavelength is tunable over 60 GHz, which is sufficient to lock on the Sodium D2 line. The robustness, beam quality, spectral narrowness and tunability of our source make it an alternative to dye lasers for atomic physics experiments with Sodium atoms

    An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    Full text link
    We present an all solid-state narrow line-width laser source emitting 670mW670\,\mathrm{mW} output power at 671nm671\,\mathrm{nm} delivered in a diffraction-limited beam. The \linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring laser operating on the 4F3/24I13/2{^4F}_{3/2} \rightarrow {^4I}_{13/2} transition in Nd:YVO4_4. By using periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100GHz100\,\rm GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented
    corecore